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Abstract
A fundamental measure functional is used to study the induced freezing and
re-entrant melting for the hard-disc fluid in an external periodic potential.
The phase diagram obtained shows good agreement with recent experimental
studies. We also use the functional to describe the hard-disc fluid density near
a hard wall and investigate whether this 2D functional can correctly describe
the 0D limit.

1. Introduction

It has been known for some years now that colloidal particles in two dimensions can undergo
freezing and re-entrant melting when exposed to a one-dimensional periodic potential. As these
phenomena were first explored using lasers, they have been named laser-induced freezing (LIF)
and laser-induced melting (LIM). Within the last decade several studies have been undertaken
using experiments [1–5], simulations [6–9] and theory [10–12] to explore the nature of these
phase transitions. The existence of a critical point in the phase diagram, the density ranges
in which LIF and LIM occur and how strong an external potential is needed to obtain these
phenomena are all subjects still under investigation.

Our understanding of LIF and LIM at the microscopic level is still limited. The prevailing
explanation argues that particle fluctuations play an important role in the phase transition as
the re-entrant liquid phase can be seen as stripes of particles confined by the external potential
where the correlations between stripes are lost.

Almost simultaneously with these discoveries, Rosenfeld [13] constructed a density
functional theory to describe hard-particle fluids employing an entirely new type of functional
called the fundamental measure functional. This functional has yielded very accurate results
for a range of liquid properties, including phenomena only observed in inhomogeneous and
confined systems [14–18]. Within the last few years the fundamental measure functional has
been successfully applied to more complicated systems such as liquid mixtures [15, 19–21] and
particles with anisotropic shapes [22, 23]. Perhaps the most intriguing aspect of Rosenfeld’s
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theory is that the only input to the functional is the geometric measures or shapes of the
particles. Most other types of functional rely on knowledge of particle correlation functions;
by contrast to these functionals, the correlation functions fall out naturally from the Rosenfeld
functional. This is particularly useful when investigating inhomogeneous systems, where
particle correlation functions are generally unknown.

Despite these successful applications of the theory, the functional was initially unable to
reproduce the well-known freezing of hard spheres [16, 17, 24]. This led to the development of
several extensions to the theory focusing on describing the properties of dimensional crossover
correctly [24–27]. But to our knowledge, the original functional has not yet been applied to
freezing in 2D.

In this paper we investigate the hard-disc system under the influence of a periodic external
potential using Rosenfeld’s functional. We are able to confirm several observations seen in
recent experiments performed by Bechinger et al [5] and provide some support for the proposed
explanation behind LIM. Previous theoretical and simulation studies have not produced the
phase diagram observed in [5]. We also apply the functional to the case of adsorption at a hard
wall, which serves as an excellent test for any theory describing simple liquids.

The phase behaviour of the true 2D hard-disc system is not as well understood as the
corresponding 3D system. Size effects play a much larger role in 2D, so recent simulation
studies have used larger numbers of particles even than experiment [28], but still have not been
able to distinguish definitely between a first-order and a second-order (hexatic) transition. Our
density functional approach, being mean field in character, is unable to resolve this issue, but
in the presence of an external field it appears to give useful results.

The outline of this paper is as follows. In section 2 we briefly describe the density
functional theory used. In section 3, this theory is applied to a hard-disc fluid in different
inhomogeneous situations; near a hard wall, in the 0D limit and in a periodic external potential.
In section 4, we summarize and comment on the results.

2. Theory

Within density functional theory we calculate the grand-canonical potential � as a functional of
the one-particle density ρ(r). It is related to the Helmholtz free energy F through a Legendre
transformation. Since the ideal contribution to F is known exactly, we can write

�[ρ(r)] = F[ρ(r)] +
∫

dr ρ(r)Vext(r) −
∫

dr ρ(r)µ (1)

F[ρ(r)] = β−1
∫

dr ρ(r){ln(�2ρ(r)) − 1} + Fex[ρ(r)] (2)

where Fex is the non-ideal or excess contribution to F , Vext(r) is an external potential and µ

is the chemical potential. β is 1/kBT and � is the thermal de Broglie wavelength.
To obtain a proper description of the liquid and solid states, we use the Rosenfeld or

fundamental measure theory functional [13]. In particular, we employ the Kierlik–Rosinberg
(KR) version [16, 17], which has been shown to be identical to the original Rosenfeld
functional [29, 30], but has for our particular purpose a simpler mathematical structure. This
functional rests on the assumption that Fex can be described as a functional of a set of weighted
densities obtained by averaging the particle density with geometric measures of the particles.
This assumption is based on the knowledge of the exact functional, whose behaviour is known
in the low- and high-density limits. The excess free energy takes the following form:

β Fex[ρ(r)] =
∫

dr �{nγ (r)} (3)
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where � in any dimension D is given as a function of a set of D + 1 weighted densities {nγ (r)}.
There are several ways to define � and the weighted densities, but in 2D the KR version has
the following structure:

� = −n0 ln(1 − n2) +
n2

1

4π(1 − n2)
(4)

and the weighted densities are determined by averages or convolutions of the particle density:

nγ (r) =
∫

dr′ ρ(r′)ω(γ )(r − r′). (5)

The weight functions ω(γ )(r) are found by decomposing the Mayer function in pairwise
products of functions characteristic of the particles. This decomposition is exact for hard
spheres (3D) and hard rods (1D), but represents an approximation for hard discs as discussed
in [15]. This yields the following weight functions:

ω(2)(r) = 	(R − r)

ω(1)(r) = δ(R − r)

ω(0)(r) = 1

4π

(
1

R
δ(R − r) + δ′(R − r)

)
.

(6)

In Fourier space,

ω(2)(k) = R J1(k R)/k
ω(1)(k) = R J0(k R)

ω(0)(k) = 1

4π
(2J0(k R) − k R J1(k R)).

(7)

Given a free energy functional, the standard procedure for solving for the equilibrium
density distribution is to minimize the grand-canonical potential at constant pressure and
temperature. Setting δ�[ρ(r)]

δρ(r)
= 0 the following equation is obtained:

ρ(r) = ρ0 exp(−βVext(r) + c1(ρ : r) − c1(ρ0 : r)) (8)

where c1(ρ : r) = − δβFex[ρ(r)]
δρ(r)

is the one-particle direct correlation function. c1(ρ0 : r) is the
corresponding function for the bulk fluid. To ensure that equation (8) remains normalized, it
is divided by

∫
dr ρ(r). Taking this together with equations (3) and (5), we obtain

c1(ρ : r) = −
∫

dr′ ∑
γ

δ�

δnγ (r′)
ω(γ )(r − r′) (9)

which can be calculated numerically using FFT. Equations (8) and (9) can be solved self-
consistently for the equilibrium density ρ(r).

This recipe is in principle sufficient for calculating the equilibrium density distribution
and the associated free energy, given the form of Vext(r). However, in the case of a solid,
the density distribution is usually highly peaked around the lattice sites, and solving for it
self-consistently is a daunting numerical task. Instead, we use the well-known method of
approximating the solid density as a sum of Gaussian distributions over the lattice sites:

ρ(r) = ρ0

∑
i

α

π
exp(−α(r − ri )

2) (10)

where ρ0 is the average density and ri denotes the position of the lattice sites. α determines
the width of the distribution and is used as a variational parameter when minimizing the free
energy. We use a triangular lattice to model the solid.

The equilibrium density distribution is ultimately determined by the external potential.
Much of the interest in the field is focused on a periodic 1D potential, since this has been shown
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experimentally to induce freezing. Furthermore, recent studies [3–5, 7, 9] have indicated a
re-entrant perturbed liquid phase when the 1D potential becomes sufficiently strong. In order
for the 1D potential to be commensurate with the triangular lattice it must possess a certain
periodicity and is modelled using the following form:

Vext(x) = V0 cos(2πx/L) (11)

where the period L is given by L = a
√

3/2 with a the lattice constant. The cosine is an
excellent fit to the external potential created in experiments.

3. Results

The main purpose of this paper is to investigate the phenomena of induced freezing and melting
in simple liquids, but we first present two important test cases for the functional in order to
justify using it in 2D. Both cases have been studied in 3D using the Rosenfeld and other
functionals, but studies have to our knowledge not been carried out for the hard-disc fluid so
far within in the framework of DFT.

3.1. Adsorption at a hard wall

Solving for the density profile of a bulk liquid in the presence of a hard wall constitutes an
excellent test for a functional used to model an inhomogeneous fluid in a planar geometry. The
hard wall is described by an external potential

Vext(x) =
{

∞ x < R

0 x � R
(12)

where x measures the distance from the wall. Since the density profile and therefore the
weighted densities only vary in the x-direction we obtain the following expressions using
equation (5):

n2(x) = 2
∫ R

−R
dx ′ ρ(x − x ′)

√
R2 − x ′2 (13)

n1(x) = 2R
∫ R

−R
dx ′ ρ(x − x ′)

1√
R2 − x ′2 (14)

n0(x) = n1(x)

2π R
+ 2R

∫
dx ′ ρ ′(x − x ′)

x ′
√

R2 − x ′2 . (15)

The density profile can now be solved for, using equations (8), (9), and the results for several
bulk densities are shown in figure 1. These profiles are, as expected, very similar to the
results obtained in [18] where density profiles were calculated in a circular cavity using the
same functional. Furthermore, the contact density ρw = ρ(x = R+) must obey the sum rule
ρwσ 2 = β P , where P is the bulk pressure of the liquid at density ρ0σ

2 [31]. In figure 2,
results for ρw are compared with the bulk pressure obtained from the scaled particle theory
equation of state and simulations [32], with excellent agreement.

3.2. The 0D limit

The failure of the original Rosenfeld functional to predict freezing in 3D has been attributed to
the divergences that appear in the functional when the 3D density distribution becomes highly
peaked [16, 24–26]. As the density distribution approaches a sum of δ-functions, each lattice
site can be viewed as a cavity that can hold only one or zero particles. In order for the functional
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Figure 1. The density profile for hard discs near a hard wall (ρ0σ
2 = 0.5, 0.6, 0.7).
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Figure 2. The contact density ρw of the 2D liquid compared to the bulk pressure calculated from
the SPT equation of state β Pbulk = ρ0σ

2(1 − ρ0σ
2π/4)−2. Results from simulations [32] are

shown as circles.

to correctly describe the solid, it must be able to reproduce this 0D limit correctly. Using this
idea, several successful improvements have been made to the original Rosenfeld functional
that correct the divergent behaviour and yield better dimensional crossover properties, while
at the same time preserving the original idea behind the functional [26, 27].

There is no particular reason to expect the 2D functional to exhibit the same divergent
behaviour, since the term in �(3D) that gives rise to the divergences is not present in the 2D
functional. However, we proceed to test the 2D functional against the exact result for 0D. It
can be shown that in 0D the exact excess free energy as a function of the average occupation
number in a cavity is [25]

f (0D) = N0 + (1 − N0) ln(1 − N0). (16)

As the average occupation number is just the packing fraction, we can calculate the 0D
limit of the 2D functional by using a density distribution consisting of a single Gaussian



12026 L L Rasmussen and D W Oxtoby

0 0.2 0.4 0.6 0.8 1
N

0

0

0.2

0.4

0.6

0.8

1

βf
(2

D
)

f
(0D)

exact

f
(2D)

α=200

10
3

10
4

10
5

α

0.97

0.98

0.99

1

βf
(2

D
) (N

0=
1)

Figure 3. The 0D limit of the 2D functional calculated at α = 200 compared to the exact 0D result.
The inset shows how the 2D functional at the end-point N0 = 1 approaches 1 as α → ∞.

multiplied by N0 in the limit α → ∞:

ρ(r) = N0
α

π
exp(−αr2). (17)

In figure 3 the results from equations (16) and (17) are compared. The discrepancy may be
attributed to an inability of the 2D functional to exhibit perfect dimensional crossover, although
the significance of the Gaussian approximation is not yet fully understood. The inset in figure 3
does suggest that as α → ∞ the 0D limit is recovered, but the values of α needed to reproduce
the 0D limit are much higher than those observed for the corrected 3D functional [25].

3.3. Phase transitions in a 1D external potential

The general procedure for mapping out the phase behaviour is to solve for the density
distribution that minimizes the free energy in each phase and compare the corresponding
free energies. For the liquid state, this means using equations (8) and (3)–(5). The solid
density distribution is instead given by equation (10) and α is used as variational parameter.

When a periodic external potential is applied to the liquid below the freezing transition,
one would expect the liquid to exhibit a symmetry similar to that of the external potential. In the
limit of βV0 → 0 the liquid density should approach a cosine form: we find that the amplitude
of the perturbed liquid density profile is equal to the result predicted by linear response theory,

ρ = βρ0V0S(k), where S(k) is the static structure factor and k = 2π/L is the wavevector
of the external potential. For larger amplitudes of the external potential this is no longer the
case, as it would eventually imply regions of negative density. However, when V0 does become
sufficiently large, regions with density approaching zero appear as the liquid density becomes
more and more peaked in the troughs of the potential.

As can be seen from figure 4, there is a free energy cost associated with perturbing the
liquid for small amplitudes, which negates the drop in free energy obtained from the interaction
with the external potential. As V0 increases and the liquid density becomes sufficiently peaked,
δβFliquid

δV0
approaches −1.

In order to calculate the weighted densities for the solid, we note that both the density and
the weight functions in equation (5) are radially symmetric distributions. We cannot, however,
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Figure 4. Free energy for the liquid (full curves) and solid (dashed curves) states as a function of
βV0. The re-entrant liquid phase can be seen from the curves for ρ0σ

2 = 0.85 as the liquid curve
recrosses the solid curve. The solid curves end where the solid state is no longer metastable.

reduce these convolution integrals to radial integrals using the same approach as in 3D [25].
Instead we calculate the weighted densities as Fourier transforms of two radially symmetric
functions:

nγ (r) = 2π

∫
dk k J0(kr)ρ(k)wγ (k) (18)

using equation (7).
Having the weighted densities for the solid, the free energy per particle can now be

calculated. In figure 4 the free energy per particle for the liquid and the solid are plotted
against V0 at two densities. At ρ0σ

2 = 0.92 the liquid is stable until βV0 � 1.0 where the
solid free energy curve crosses the liquid curve. The solid remains the stable phase for higher
values of V0. At ρ0σ

2 = 0.85 the solid curve dips below the liquid curve at βV0 � 2.0. But at
βV0 � 7.5 the liquid becomes the stable phase again. The points at which the solid and liquid
curves cross are shown in the phase diagram in figure 5. The freezing transition moves to
lower densities until ρσ 2 � 0.837 where the liquid again becomes more stable than the solid
phase. To determine the freezing and melting densities (ρf and ρm) for a given value of V0, a
double-tangent construction is used. These densities are also shown in figure 5. For βV0 → 0
the solid and liquid curves approach closest packing, signifying no stable solid on a triangular
lattice without the influence of an external potential. A metastable solid state is observed for
ρ0σ

2 > 0.95.
The phase diagram bears a close resemblance to the experimental observations in [5]

and supports the notion that the re-entrant liquid phase is only seen for densities just above
the minimum in the coexistence curve (ρ � 0.837–0.86). It is interesting to note that the
liquid density profile corresponding to the bottom of the coexistence curve has regions of
nearly zero density with a width of ∼2R. The highest density for which this is possible is
ρ = √

3/2 = 0.866 where L = 2R. That seems to support the suggestion that the re-entrant
liquid phase is observed when the external potential becomes large enough to quench the
correlations between rows of particles and effectively creates 1D stripes of liquid.

However, in contrast to the experimental study our work does not find that the freezing
density increases for βV0 � 4. If the number of particles is kept constant and the density is
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Figure 5. The phase diagram of the hard-disc system in a 1D periodic potential of amplitude V0.
The full curves are the freezing and melting densities. The dashed curve represents the points
where the free energy of the solid and liquid states are equal.
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fixed between the melting and freezing density, one would expect the system to phase separate,
which in an experimental situation would imply that the observed liquid and solid states would
overlap in the phase diagram.

We see no evidence for the existence of a critical point in the phase diagram as has
been proposed by both theoretical and simulation studies [7, 10]. The transitions between
homogeneous liquid, solid and perturbed liquid are first order with non-zero density jumps
throughout the phase diagram.

The α-parameter corresponding to the minimum of the solid free energy is used to calculate
the Lindemann ratio (1/αa2)1/2 which is shown in figure 6 for different values of the external
potential.
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4. Discussion

We have applied the KR version of the Rosenfeld functional to a hard-disc fluid in several
inhomogeneous situations. The results for adsorption at a hard wall show excellent agreement
for the contact densities, and the density profiles closely resemble those obtained from a hard-
disc fluid in a spherical cavity [18] using the original Rosenfeld functional and simulations.

The functional also reproduces the 0D limit very well, which indicates good dimensional
crossover properties. Any discrepancy that one might infer from the exact 0D result could be
a result of the Gaussian density distribution and not due to the functional itself. It would be
interesting to repeat this calculation using the newest version of the functional [26, 27], which
was derived with this 0D limit in mind.

The phase behaviour of the hard-disc fluid in an external potential showed a remarkable
resemblance to recent experimental observations. The phase diagram shows good qualitative
agreement and the scale of the external potential matches almost exactly the experimental phase
diagram, despite the softer interactions between the particles in experiments. This suggests that
not only is the hard-disc fluid an excellent model system for colloidal particles, but the induced
phase transitions are governed by entropic rather than energetic effects. Further studies on the
temperature dependence of the transitions may shed further light on this.

The proposed microscopic explanation for the induced freezing and melting phenomena
involving particles fluctuations is consistent with the density profiles of the perturbed liquid
phase that we calculated. In the region of the phase diagram where re-entrant melting is
observed, we find that the density profile of the perturbed liquid resembles stripes of liquid
separated by stripes with nearly zero density of width ∼2R. By using different symmetries
and wavelengths of the external potential, this issue could be further investigated.
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